2 research outputs found

    Energy-Saving Strategies for Mobile Web Apps and their Measurement: Results from a Decade of Research (Preprint)

    Full text link
    In 2022, over half of the web traffic was accessed through mobile devices. By reducing the energy consumption of mobile web apps, we can not only extend the battery life of our devices, but also make a significant contribution to energy conservation efforts. For example, if we could save only 5% of the energy used by web apps, we estimate that it would be enough to shut down one of the nuclear reactors in Fukushima. This paper presents a comprehensive overview of energy-saving experiments and related approaches for mobile web apps, relevant for researchers and practitioners. To achieve this objective, we conducted a systematic literature review and identified 44 primary studies for inclusion. Through the mapping and analysis of scientific papers, this work contributes: (1) an overview of the energy-draining aspects of mobile web apps, (2) a comprehensive description of the methodology used for the energy-saving experiments, and (3) a categorization and synthesis of various energy-saving approaches.Comment: Preprint for 2023 IEEE/ACM 10th International Conference on Mobile Software Engineering and Systems (MOBILESoft): Energy-Saving Strategies for Mobile Web Apps and their Measurement: Results from a Decade of Researc

    SmartDelta project: Automated quality assurance and optimization across product versions and variants

    No full text
    Software systems are often built in increments with additional features or enhancements on top of existing products. This incremental development may result in the deterioration of certain quality aspects. In other words, the software can be considered an evolving entity emanating different quality characteristics as it gets updated over time with new features or deployed in different operational environments. Approaching software development with this mindset and awareness regarding quality evolution over time can be a key factor for the long-term success of a company in today’s highly competitive market of industrial software-intensive products. Therefore, it is important to be able to accurately analyze and determine the quality implications of each change and increment to a software system. To address this challenge, the multinational SmartDelta project develops automated solutions for the quality assessment of product deltas in a continuous engineering environment. The project provides smart analytics from development artifacts and system executions, offering insights into quality degradation or improvements across different product versions, and providing recommendations for the next builds. This paper presents the challenges in incremental software development tackled in the scope of the SmartDelta project, and the solutions that are produced and planned in the project, along with the industrial impact of the project for software-intensive industrial systems.This work has been supported by and done in the scope of theITEA3 SmartDelta project, which has been funded by the nationalfunding authorities of the participating countries: https://itea4.org/project/smartdelta.html. Vinnova: 2021-04730</p
    corecore